
TVS Diodes Axial Leaded - 10kA > KC Series

Description

The KC Series of high powerTVS diode is specially designed for meeting severe surge test environment of both AC and DC line protection applications. It features a very fast response and ultra low clamping characteristics over traditional metal oxide (MOV) solutions. They can be connected in series and / or parallel to create a very high surge current protection solution..

- Very low clamping voltage
- Ultra compact: less than one-tenth the size of traditional discrete solutions
- Sharp breakdown voltage
- Low slope resistance
- Bi-directional
- Foldbak technology for superior clamping factor
- Symmetric in leads width for easier soldering during assembly.
- IEC-61000-4-2 ESD 15kV(Air), 8kV (Contact)

- ESD protection of data lines in accordance with IEC 61000-4-2
- EFT protection of data lines in accordance with IEC 61000-4-4
- Halogen-free
- RoHS compliant
- Glass passivated junction
- Pb-free E4 means 2nd level interconnect is Pb-free and the terminal finish material is Silver

Maximum Ratings and Thermal Characteristics (T_A =25°C unless otherwise noted)

Parameter	Symbol	Value	Unit
Operating Junction and StorageTemperature Range	TJ ,TSTG	(-)55 to125	°C
Current Rating1	Ірр	10	kA

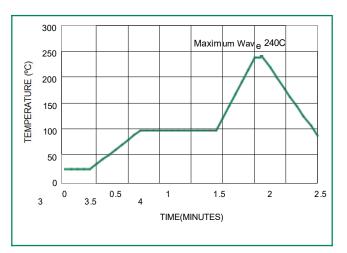
Note

1. Rated I_{PP} with 8/20µs pulse. measured

Functional Diagram

Electrical Characteristics (T_A=25°C unless otherwise noted)

Part Number	Reverse Stand-Off Voltage		n Voltage lT	Test Current	Maximum Clamping Voltage @IPP (V)	Maximum Peak Pulse Current	Maximum Reverse Leakage @VRWM	Package
	VRWM (V)	VBR MIN(V)	VBR MAX(V)	IT (mA)	VC(V)	8/20us (KA)	IR(µA)	
KC-015C	15	16	19	10	28	10	2	BPSS
KC-030C	30	32	37	10	58	10	2	BPSS
KC-058C	58	64	70	10	110	10	2	BPSS
KC-066C	66	72	80	10	120	10	2	BPSS
KC-076C	76	85	95	10	140	10	2	BPSS
KC-170C	170	180	220	10	260	10	2	BPSS
KC-190C	190	200	245	10	290	10	2	BPSS
KC-240C	240	250	285	10	340	10	2	BPSS
KC-380C	380	401	443	10	520	10	2	BPSS
KC-430C	430	440	490	10	625	10	2	BPSS
KC-530C	530	560	619	10	750	10	2	BPSS



Physical Specifications

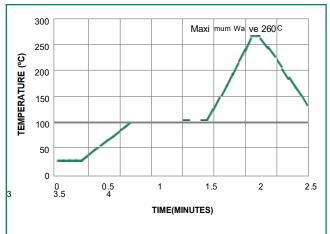
Weight	Contact manufacturer
Case	Epoxy encapsulated
Terminal	Silver plated leads, solderable per MIL-STD-750 Method 2026

Wave Solder Profile

Figure 1 - Non Lead-free Profile

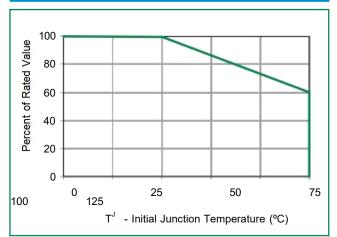
Flow/Wave Soldering (Solder Dipping)

265°C

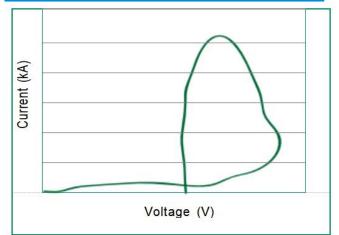

1 time

10 seconds

Figure 2 - Lead-free Profile


Peak Temperature : Dipping Time :

Soldering :



Ratings and Characteristic Curves (TA=25°C unless otherwise noted)

Figure 3 - Peak Power Derating

Figure 4 - Surge Response

KC Series

Ratings and Characteristic Curves (T_A=25°C unless otherwise noted) (Continued)

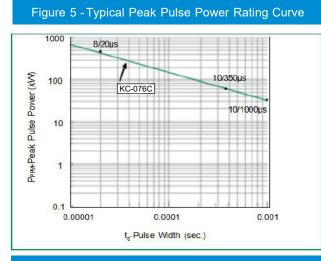


Figure 7 -Surge Response (8/20 Surge current waveform)

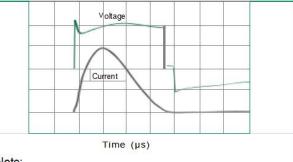
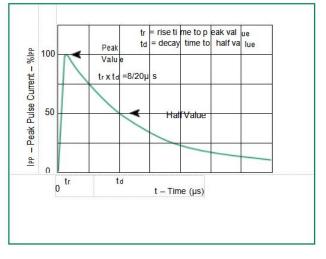
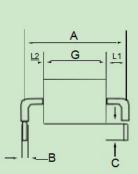
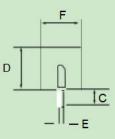



Figure 6 - Typical V_{BR} Vs Junction Temperature 12 10 8 Percent of VBR Change 6 4 2 0 -2 -4 -6 -8 100 125 -50 -25 0 25 50 75 Junction Temperature(T,)





Note:

The power dissipation causes a change in avalanche voltage during the surge and the avalanche voltage eventually returns to the original value when the transient has passed.

Dimensions

Dimensions	Inches	Millimeters	
А	0 950 +/- 0 04	24 15 +/- 1 00	
A - 530C	1 370 +/- 0 08	34 70 +/- 2 00	
В	0 095 +/- 0 024	2 40 +/- 0 60	
С	0.145 +/- 0.04	3.68 +/- 1.00	
C - 030C/058C 066C/076C 530C	0.236 +/- 0.04	6.00 +/- 1.00	
D	0 570 max	14 48 max	
E	0.050 +/- 0.002	1.27 +/- 0.05	
F	0.500 max.	12.70 max.	
G - 030C	0.167 +/- 0.04	4.23 +/- 1.00	
G - 058C/066C 076C	0.200 +/- 0.04	5.08 +/- 1.00	
G - 170C/ 190C	0.362 +/- 0.04	9.20 +/- 1.00	
G - 240C	0.420 +/- 0.04	10.67 +/- 1.00	
G - 380C/430C	0 650 +/- 0 04	16 50 +/- 1 00	
G - 530C	1.060 +/- 0.06	27.00 +/- 1.50	
L1	0.310 +/- 0.04	7.87 +/- 1.00	
L1 - 030C	0.393 +/- 0.04	9.96 +/- 1.00	
L1 - 380C/430C	0.170 +/- 0.04	4.5 +/- 1.00	
L1 - 530C	0 150 +/- 0 04	3.81 +/- 1.00	

Rev.Z2.03 D231030